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Abstract

Network Tomography isthe collection and analysis of data about network functions on all
network layers. It is essential in order to learn about computer networks and to improve them.

The objective of this thesis is to infer key variables from TCP connections such as thecon-
gestion windowand theround trip time. We have examined approaches to infer these variables
from TCP traces as well as an approach that reads them from the operating system.

The tangible result of this thesis is a set of software tools that infer the round trip time from
TCP traces as well as a web server that makes several key variables of a TCP transmission
visible to the user.
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Zusammenfassung

Unter Netzwerktomographie verstehen wirdas Sammeln und Analysieren von Datenüber Net-
zwerkfunktionen auf allen Netzwerkschichten. Sie ist von grundlegender Bedeutung, um etwas
über Rechnernetze zu erfahren und um sie zu verbessern.

Das Ziel dieser Arbeit ist, wichtige Variablen, wie zum Beispiel dasCongestion Window
und dieRound Trip Time, aus TCP-Verbindungen abzuleiten. Wir haben Ansätze untersucht,
diese Variablen aus TCP Traces abzuleiten, sowie einen Ansatz, der sie vom Betriebssystem
ausliest.

Konkretes Ergebnis dieser Arbeit ist eine Reihe von Werkzeugen, die die Round Trip Time
aus TCP Traces ableiten, sowie ein Web Server, der dem Benutzer wichtige Variablen einer
TCP-Übertragung anzeigt.
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Chapter 1

Motivation and Fundamentals

1.1 Motivation

Computer networks, once only available to universities, governments and big enterprises, have
reached numerous end users in many countries today in form of the Internet, the extensive,
worldwide computer network available to the public.

The technology of the Internet goes back to the 1970s. TheTCP/IP protocol suite, which
replaced the simplerNetwork Control Program(NCP) in 1983 and which is still in use today,
is a set of communication protocols that follow a strict partition into interchangeablenetwork
layers, each one solving a specific set of problems, reaching from the physical encoding of bits
and bytes (physical layer) over transporting data between two directly connected hosts (data
link layer), the switching of packets along an adequate path of hosts (network layer), providing
reliability between two end hosts (transport layer) to application specific issues (application
layer).

Internet protocols are a continuous subject of research and further development. Although
the Internet layers were designed to be independent of each other, new requirements and achieved
improvements on one layer can push another layer to its limits. For example the growing avail-
able bandwidth over long distance achieved by fiber optics and satellite links has necessitated
to extend theTransmission Control Protocol (TCP), that is the dominant reliable end-to-end
transport protocol used in the Internet.

One important goal that has not yet been completely achieved in spite of all past research is
to understand TCP’s performance and the factors that can limit its behavior in practice.

So the objective of this thesis is to developNetwork Tomographytools for analyzing TCP
transmissions. Therefore, two approaches will be examined and implemented in software tools.
The first one will deduce certain parameters from TCP traffic recorded somewherebetweenthe
two hosts involved in the transmission, whereas the second one will query the operating system
of one of the two hosts for these parameters.

9



10 CHAPTER 1. MOTIVATION AND FUNDAMENTALS

1.2 Network Tomography of TCP

We define network tomography in general asthe collection and analysis of data about network
functions on all network layers, from physical data transmission to the behavior and perfor-
mance of Internet systems and applications.

When we conduct network tomography we can profit in many ways. First, we can deduce
knowledge about how to design computer networks (queue management, buffer and bandwidth
provisioning, fair utilization of resources, etc.) and how to optimize networking applications.
Furthermore we can detect wrong behavior of network components. Paxson et al. [23] for exam-
ple found a number of implementation errors in TCP implementations by conducting network
tomography. Last but not least we might be able to contribute to improvements of existing
network protocols, like TCP has experienced numerous improvements over the last more than
twenty years, or design better future protocols.

In this thesis we will concentrate on network tomography on the transport layer of the Inter-
net, which is the Transport Control Protocol (TCP).

The two important characteristics of network transport performance aredelayandthrough-
put. The former denotes the time a data packet needs to travel along the network path from
the source host to its destination. The latter denotes the amount of data that can be transmitted
per time. Network, queueing and processing delay, packet loss and other pathologies manifest
themselves in the effective throughput perceived by the application that uses TCP.

Network tomography on the transport layer allows us to examine numerous questions. What
limits throughput? Are end hosts the bottleneck because they cannot generate (sender) respec-
tively process (receiver) data faster? Is the physical network the bottleneck? I.e. is congestion
on intermediate switching points limiting data transfer?

Has the transport protocol undesirable side effects under certain unforeseen circumstances?
Does certain behavior of other network hosts influence performance? What effects does the
interaction of the network layers have?

To answer these questions we need tools to “look into” what happens during data transmis-
sion with TCP. This thesis will provide a few of them.

1.3 Reliable Stream Transport

1.3.1 Motivation

Computer networks at the lowest level generally provide unreliable packet transport mecha-
nisms [6]. That means that they can route packets from one host to another, while it is neither
guaranteed that the packets are delivered in the right order, nor that they are delivered at all.
Packets might also be duplicated by the network.

In contrast, an indispensable requirement in most networking software is to send or receive
a stream of data, not packets. Implementing reliable stream transport based on a packet oriented
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routing service in every application is anything but trivial and would require to solve the same
problems such as error detection and retransmission over and over by every network application
developer.

It is therefore only logical that one has found a general purpose solution integrated into the
operating system’s network protocol stack providing applications with a simple programming
interface similar to file access while hiding networking details.

1.3.2 Properties

The functionality of reliable stream transport is as follows: A user process on the sending host
passes a stream of data bytewise to the transport service which splits it into packets and transmits
them to the receiving host using the underlying protocol layer [6]. On the receiving side the
packets are reassembled and delivered bytewise to the receiving application.

If a user process wants to use the reliable stream transport service it has to make avirtual
circuit connectionfirst, i.e. establish a connection analogous to opening a file. The remote host
and application must accept the connection. Both actions are achieved by exchanging messages
over the network. If a host detects a communication failure (e.g. because hardware along the
communication path has failed) or if the remote side closes the connection, it reports the event
to the application. The circuit is consideredvirtual because the reliability is only an illusion
provided by the stream transport service.

The packet size is determined by the service. Buffering allows the user process to transmit
chunks of data smaller or larger than that fixed packet size. The transport service collects data
and only sends them when the full packet size is reached.

A pushmechanism is provided so that the user process can induce the immediate transmis-
sion of the current buffer even if it is not full yet. That is needed for interactive protocols where
the sender of a request expects an answer from the remote side although the request does not fill
a full packet.

A connection that allows concurrent data transfer in both directions is called afull duplex
connection. From the application’s point of view, the connection consists of two independent
streams in opposite directions. An advantage from the transport service’s point of view is that it
can transmit control information for the one direction together with the data in the other direction
in the same packet and thus reduce network traffic.

1.3.3 Providing Reliability

Three kinds of network failure must be detected and overcome to provide reliability to the
application: Packets might get lost along the network path, they can be delivered out of order or
duplicated.

In order to detect and remedy loss the stream transport service uses a technique known as
positive acknowledgement with retransmission: The receiver sends back messages to the sender
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acknowledging the reception of each packet. The sender keeps the sent packets in a buffer until
it receives the acknowledgement from the remote host. Furthermore it starts a timer for every
data packet upon sending. If no acknowledgement is received within a certain time the sender
retransmits the packet. The procedure is shown in figure 1.11.

Figure 1.1:Sequence diagram for the positive acknowledgement with retransmission sequence diagram

Ascending sequence numbers are assigned to the packets in each direction. This assures
that the receiver is able to reassemble the data stream in the right order. This solves at the same
time the problem of duplicated packets: A packet with a packet number that has already been
received is just dropped.

The three mentioned problems can occur to acknowledgement messages as well: A lost
acknowledgement will eventually cause the sender to needlessly retransmit a packet which will
be perceived as a duplicate at the receiver side. Acknowledgements that have been delivered
out of order can be assigned to the right data packets by the sequence numbers. A duplicate
acknowledgement is perceived by the sender as an acknowledgement for a packet that is no
longer in its send buffer and will simply be dropped.

1In sequence diagramsvertical distance represents increasing time and diagonal lines across the middle represent
transmitted network messages.
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1.3.4 Sliding Window

The method described above perfectly ensures that the stream written by the sending application
arrives without corruption at the receiver. However, it will perform very poorly because it does
not use the network to its full capacity at all and thus wastes available bandwidth. Consider for
example a round trip time of 50 ms and a packet size of 1000 bytes. Then a sender could only
transmit 20 000 bytes per second, although the network might have a much higher capacity.

The sliding window techniqueis an extension of positive acknowledgement with retrans-
mission that allows more than one packet to be sent before an acknowledgement is received. A
packet is calledunacknowledgedif it has been sent but no acknowledgement has been received
yet. The maximum number of unacknowledged packets is called thewindow size. The actual
number of unacknowledged packets is called theflight size2. The sender still maintains a timer
for each packet and retransmits it if no acknowledgement has been received within a certain
time.

We imagine the window lying on the stream of data ready to be sent and “sliding” along the
stream by one packet to the right as soon as the leftmost packet has been acknowledged and so
forth (figure 1.2). This partitions the stream into three sets: The data to the left of the window
has been transmitted successfully; the data within the window has already been sent but not yet
acknowledged; the data to the right of the window has not yet been sent.

Initial window
1 2 3 4 5 6 7 8 9 10

Window slides→
1 2 3 4 5 6 7 8 9 10

Figure 1.2:A sliding window protocol with eight packets in the window. As soon as an acknowledge-
ment for the first packet is received the ninth packet can be sent.

The performance of a sliding window protocol depends linearly on the window size (and
is of course limited by the speed at which the network accepts packets). Consider the example
from above where the round trip time was 50 ms and a packet size was 1000 bytes. If you set
the window size to 8, the reachable bandwidth will be approximately 160 kilobytes per second
instead of only 20. If you set the window size to 1, the protocol would be identical to the positive
acknowledgement and retransmission method.

2Consequently the flight size is less or equal to the window size.
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Figure 1.3:The sequence diagram for the sliding window protocol

1.4 The Transmission Control Protocol (TCP)

TheTransmission Control Protocol(TCP) is the reliable stream transport protocol of the TCP/IP
protocol suite. Together with theUnreliable Datagram Protocol (UDP)it forms theTransport
Layer in the Internet.

It specifies the format of data and acknowledgements, the mechanisms for providing reli-
ability, flow control by the receiver, network congestion control, how to distinguish between
multiple destinations and connections on a machine, as well as how two applications initiate
and terminate a connection.

The interface to the application layer — i.e. how an application opens and closes a con-
nection and how it transmits data — isnot part of the TCP specification but depends on the
implementation.

The original specification of the Transmission Control Protocol from 1981 can be found in
[25]. [5] in 1989 updated the standard and clarified several points.

Although within the TCP/IP protocol stack TCP is built on the Internet Protocol (IP) as
network layer it is designed to be deployable in any other environment as well because it makes
only few assumptions on the underlying communication system.

1.4.1 Addressing

TCP allows multiple processes on a given host to communicate at the same time and it demulti-
plexes incoming traffic among them. To identify the destination application within a host TCP
usesprotocol port numbers, which are 16 bit integer numbers.

An endpointis a pair of integers: the host address (IP address) and the port number. Several
endpoints can be associated to one process. A TCPconnectionis a pair of endpoints. This
implies that one endpoint can be part of several connections.
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For example one application process can connect to a web server’s endpoint 193.55.113.240:803

from its endpoint 82.83.197.81:1069, whereas an application process on another host can con-
nect to exactly the same endpoint from its local endpoint 213.23.23.18:1139.

1.4.2 TCP Segment Format

The data unit of the TCP specification is asegment. Each segment consists of a variable-length
header and the data it transports. Figure 1.4 depicts the structure of the TCP header.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 67 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port

Sequence Number

Acknowledgement Number

Offset Reserved Flags Window

Checksum Urgent Pointer

(Options) (Padding)

Figure 1.4:TCP header format

The 16 bitSource PortandDestination Portfields contain the TCP port numbers that iden-
tify the two endpoints of the connection4.

The 32 bitSequence Numberidentifies the position in the sender’s byte stream and is needed
by the receiver to re-assemble the segments in the right order. Note that this is not a segment
number as in the example in the previous section but the stream position ofthe first byteof
the segment. The initial sequence number is a random value determined at the beginning of a
connection (see 1.4.3). TheAcknowledgement Numbercontains the next sequence number that
the sender of the segment expects to receive, which is the sequence number of the last received
segment plus its length (see 1.4.4).

The 4 bitData Offsetfield gives the beginning of the payload within the segment. This is
necessary since theOptionsfield (see below) has variable length. It is given as a multiple of
4. Consequently the length of the header in bytes must be divisible by 4. This is achieved by
insertingPaddingafter its end if necessary.

TheFlagsfield contains six control bits. Their meaning is given in figure 1.5.

In the 16 bitWindowfield the source indicates to the destination the available size of its
receive buffer.

3The colon is the delimiter between host address and port number.
4The source and destination host addresses do not appear in the TCP header since they are part of the network

protocol, i.e. IP in the Internet.
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URG Urgent Pointerfield significant

ACK Acknowledgment Numberfield significant

PSH Push Function

RST Reset the connection

SYN Synchronize sequence numbers

FIN No more data from sender

Figure 1.5:TCP flags

The 16 bitChecksumenables the receiver of a segment to verify that it has not been corrupted
by lower network layers during the transmission.

The 16 bitUrgent Pointerin not used in present applications. For an explanation please
refer to [30].

In the variable lengthOptionsfield TCP senders can transmit control information for exten-
sions of TCP that have not been foreseen in its original specification. Relevant options for this
thesis are theMaximum Segment Sizeoption (see 1.4.3) and theTimestampoption (see 2.3.5).
An option consists of a 1 bytekind5, a 1 bytelengthand zero or moreparameters6.

Note that the payload length is not provided within the TCP header but that the whole seg-
ment’s size is determined by the network protocol packet in which the TCP segment is embed-
ded.

1.4.3 Connection Setup

The TCP protocol requires both endpoints to agree to communicate with each other. Therefore,
one application must perform apassive openby indicating to the operating system that it wants
to receive incoming connections on a specified port number. The operating system then assigns
the desired port number to the corresponding process if it is still available. The other application
must perform anactive open, that means that it requests its operating system to connect to
the remote endpoint. The two TCP implementations then exchange messages to establish the
connection. Upon success the two applications can exchange data until one of them closes the
connection.

TCP uses athree-way handshakeprocedure to establish a connection. The messages ex-
changed are shown in Figure 1.6 (assuming that no message needs to be retransmitted and that
only one side initiates the connection).

The first segment has only the SYN bit set in the flags field. The second one in the opposite
direction has the ACK bit set, indicating that it acknowledges the preceding SYN segment, as
well as the SYN bit for continuing the handshake. The third segment has only the ACK bit set

5for example 0x04 for Maximum Segment Size or 0x08 for TCP Timestamp
6for example a proposed maximum segment size or a TCP timestamp and echo
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Figure 1.6:Three-way handshake sequence diagram

and thus acknowledges the preceding SYN-ACK segment. We will refer to the three handshake
segments asSYN, SYN-ACKandACK.

Besides guaranteeing that both sides are ready to transfer data, the three-way handshake
exchanges the (randomly chosen) initial sequence number in both directions.

During connection initiation themaximum segment size(MSS) is negotiated by including
theMSS optionin the SYN and the SYN-ACK segment (see 1.4.2). The maximum segment size
is the minimum of the proposal of both sides or 536 bytes if one side does not send an MSS
option. The size includes the (variable) length of the TCP Options field.

For a detailed description of the procedures for closing or resetting a TCP connection please
refer to [6].

1.4.4 Sending Data and Detecting Loss

TCP uses a sliding windows mechanism similar to the one introduced in section 1.3.4. The TCP
receiver advertises the maximum window it can handle (which is the available size of its receive
buffer) in the window field of the TCP header. Additionally the sender adapts the window size
depending on network conditions in order to prevent the network from being flooded with more
packets than it can handle7. The actual window size used by the TCP sender is the minimum of
these two constraints.

The TCP sliding windows mechanism operates at byte level rather than on segment level,
i.e. the unit of the header fields and TCP state variables is bytes rather than segments.

Segments can be lost or delivered out of order, so at any time the receiver will have re-
constructed zero or more bytes contiguously from the beginning of the stream, but may have
additional pieces of the stream from segments that arrived out of order. The receiver always

7We will see in 1.4.5 that this limitation has been introduced after the original TCP specification.
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acknowledges the longest contiguous prefix received correctly. The pointer in theacknowledge-
mentfield of the TCP header indicates the highest byte position of the contiguous prefix plus
one, which is the same as the next segment number the receiver expects to receive.

This method is calledcumulative. Cumulative acknowledgements are easy to generate and
unambiguous. Moreover a lost acknowledgement does not force retransmission if the acknowl-
edgement of a subsequent data segment is received before the timer expires.

A major drawback of this method is that if one data segment is lost, the sender does not
get feedback about the delivery of subsequent data segments but only about the position of the
longest complete prefix. So when a timeout occurs, the sender has to chose between two po-
tentially inefficient responses: If the next data segments have been delivered, retransmitting all
of them is a waste of bandwidth, whereas if the subsequent segments got lost as well, await-
ing the new acknowledgement number after each retransmitted segment is unnecessarily time
consuming.8

In the Internet the network delay between two hosts is highly variable and can change over
time. Therefore, TCP does not use a fixed value for its retransmission timer but calculates the
time-out continuously. The time after which a segment is retransmitted if an acknowledgement
has not been received depends on previously measured round trip time samples as well as on
their variance.

RFC 1122 [5] allows a TCP receiver to delay acknowledgements and to send an acknowl-
edgement only for every second data packet. The maximum delay is limited to 500 ms. Current
implementations use a limit of 200 ms. In an interactive connection where one host sends a
request and expects a response from the other host, the delay enables the acknowledgement to
bepiggybackedto the generated response data, saving one segment. In a bulk connection where
one host sends a large amount of data to the other only acknowledging every second data packet
has the obvious advantage of reducing control traffic from the data receiver to the sender.

1.4.5 Congestion Control

The original TCP specification [25] considered only flow control imposed by the receiver: The
window size limits the number of segments that the sender injects into the network before re-
ceiving an acknowledgement. In practice, however, the sender must also respond tocongestion
on the network path by reducing its transmission rate if necessary. Therefore, [10] introduced
mechanisms forcongestion control.

8RFC 2018 [18] solves this problem by introducing theSelective Acknowledgement Option (SACK)which enables
the receiver to inform the sender about successfully transmitted out-of-sequence segments while not changing the
meaning of the acknowledgement number field in the TCP header. The authors of [19] stated that in 2004 64.7% of
the web servers in the Internet they examined supported SACK correctly.
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Slow Start and Congestion Avoidance

Congestion is a state where at least one router along the network path receives more packets
than it can forward. It will queue the excessive packets. If overload continues and the router’s
queue grows to its limit, it must drop packets.

The timeout and retransmission mechanism alone would aggravate the state of congestion
because it would respond to increased delay by unnecessarily retransmitting packets. So a mech-
anism is needed to respond properly to network congestion by reducing the transmission rate.

[10] provides theslow startand thecongestion avoidancealgorithms for congestion control,
which are nowadays part of every TCP implementation. The author assumes that packet loss in
the Internet is in the majority of cases an evidence for congestion rather than for corruption.

The author introduces thecongestion windowvariable (to which we will refer to ascwnd in
the following): The TCP sender has to ensure that the amount of unacknowledged data (datain
flight) does not exceedcwnd. Note that the constraint for the amount of unacknowledged data
not to exceed the receiver’s advertised window is also still valid.

 0

 5

 10

 15

 20

 25

 30

 35

cw
nd

time

timeout timeout timeout

SS SS SS SS

CA CA

Figure 1.7:Developing of the congestion window during slow start and congestion avoidance

At the beginning of a connection the TCP sender is inslow startand initializescwnd to one
segment and increases it by one segment upon the reception of every ACK. This results in an
exponential growth ofcwnd: After reception of the first ACK,cwnd grows from one to two
and two segments will be sent. Upon arrival of their corresponding two ACKs,cwnd will be
increased from two to four and so on9. The slow start phase is marked with “SS” in figure 1.7.

9So the termslow is in fact misleading.
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Every time congestion is observed (indicated by a retransmission timer to expire), the TCP
sender saves half of the currentcwnd (but at least one segment size) in theslow start threshold
variable (ssthresh ), resetscwnd to one segment and continues to perform slow start.

As soon ascwnd exceedsssthresh , the TCP sender enterscongestion avoidancewhere
it widens the congestion window only by one segment per window size10 which results in linear
growth. The congestion avoidance phase is marked with “CA” in figure 1.7.

The 4.3 BSD Tahoe Implementation: Fast Retransmit

A TCP receiver always acknowledges the longest contiguous prefix received and thus sends the
same acknowledgement number more than once if out of order segments arrive11. Thus, the
reception of so calledduplicate ACKscan be an indication of packet loss. Since it might also be
an indication of reordered segments, the TCP implementation of the operating system4.3 BSD
Tahoeassumes packet loss only after the reception of three duplicate ACKs12. In that case it
retransmits the expected segment immediately without waiting for the retransmission timer to
expire.

In 4.3 BSD Tahoe the sender then enters nevertheless slow start withcwnd reset to one
segment as depicted in figure 1.7.

The 4.3 BSD Reno Modification: Fast Recovery

The operating system’s next version4.3 BSD Renointroduced a new method calledfast re-
covery(described in detail in [31]) that changes the behavior after fast retransmit: When three
duplicate ACKs are received, setssthresh to half of cwnd. Setcwnd to ssthresh plus
three segments. For each subsequent duplicate ACK incrementcwnd by one (and thus transmit
another segment). The next time new data is acknowledged, setcwnd to ssthresh and leave
fast recovery. This behavior is depicted in figure 1.8.

The rationale behind this modification is that the reception of a duplicate ACK does not only
mean that a segment has been lost, but also that a subsequent segment has arrived at the receiver
and that the data flow between source and destination is not completely disrupted.

Note that the fast recovery algorithm does not apply after a timeout. In that case slow start
is entered as described earlier.

10Implementations in fact increasecwnd by 1 /cwnd per received ACK. According to [30] many implementations
add another segment size divided by 8.

11In fact the original specification [25] is ambiguous about whether or not an ACK segment should be sent when
an out of order segment was received. However, all current implementations do so.

12Note that this isfour segments with the same acknowledging number.
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Figure 1.8:Developing of the congestion window if Fast Recovery is used

Increasing TCP’s Initial Window

In 1999 RFC 2581 [4] allowed to initialize the congestion window at the beginning of a connec-
tion to up to two segments.13 This modification is nowadays widely accepted and implemented.
RFC 2414 [3] experimentally allows an initial congestion window of up to four segments de-
pending on the maximum segment size.

The main advantage is in conjunction with delayed ACKs (see 1.4.4): With aninitial con-
gestion window (icwnd ) of only one segment the receiver may delay the sending of the first
ACK by up to 500 ms. Since the specification dictates to send an undelayed ACK for at least
every second segment, the increase oficwnd to at least two segments avoids this needless delay
during the first round trip.

The more obvious advantage is that an increasedicwnd can reduce the transmission time
by one round trip time, which is especially useful for small data transfers such as web access.

The 4.4 BSD NewReno Modification

The4.4 BSD NewRenoversion of TCP [8] introduces another modification in the Fast Retrans-
mit algorithm in order to respond properly to multiple losses within one window.

Therefore, during fast retransmit it distinguishes between ACKs that acknowledge the whole
window and ACKs that acknowledge only part of it, which means that the loss that triggered
fast retransmit was not the only one.

13This doesnot affect the congestion window size after a loss.
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When entering fast recovery, i.e. after reception of three duplicate ACKs, the new variable
recoverholds the next sequence number to be sent, which is the acknowledgement number
expected when all segments currently in flight will have been acknowledged by the receiver.
During fast recovery, arriving ACKs will be compared to that stored value. If the acknowledge-
ment number is smaller, it is apartial ACK andcwnd will be deflated by the number of bytes
the ACK acknowledges minus one segment size. Otherwisecwnd is set tossthresh like in
the Reno version and fast recovery mode is left.

1.5 Active vs. Passive Examination

There are two major ways to examine TCP communication: One can either send specifically
prepared packets to a TCP implementation in order to provoke certain behavior and thus create
TCP traffic in anactiveway. Or one can observe TCP traffic between two hosts by record-
ing packet traces and analyzing them, which we considerpassivebecause that way we do not
influence the traffic.

The active approach is very useful if we want to examine only a small number of hosts. It is
indispensable for studying the response tounusualbehavior such as packet loss: The modified
TCP sender can just leave out one or more data segments to simulate loss, whereas we would
have to wait until loss eventually occurs if we examined traffic between normal TCP senders.
The active approach is furthermore the only way to study response toabnormalbehavior as it is
the case when trying to exploit security vulnerabilities: Susceptibility to the problem described
in [16]14 for example can only be probed if a purposefully modified ICMP packet is sent to the
particular host.

The main advantage of passive measurement is that you can conduct enquiries about a large
number of end-to-end connections by recording traffic at a central network switching point and
analyzing it. The authors of [12] for example used traffic from a Tier-1 Internet service provider
that they found representative to infer the round trip time distribution in the Internet and to find
out what is limiting throughput in the majority of cases. Another case where only passive but
not active measurement is possible is the examination of the behavior of clients, because you
usually cannot connect to them: In [19] the authors wanted to learn about web client behavior
by tracking traffic generated by their web server.

1.6 Analysis of Packet Traces vs. Access to TCP State Variables

The passive approach of network tomography can further on be divided into two major cate-
gories: Either you can observe segments from a point on the network pathbetweenthe two end

14“Multiple TCP/IP implementations do not adequately validate ICMP error messages. A remote attacker could
cause TCP connections to drop or be degraded using spoofed ICMP error messages.”
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hosts — which is the more widespread way — or you have access to certain state variables of
the communication software on one or both end hosts.

The former approach has been discussed in 1.5. For the latter one it is obviously necessary
to have access to at least one end host, which makes it impractical to examine a large number
of connections. Besides, the source code of the TCP implementation must be available to get
access to the variables. If these preconditions are fulfilled this method gives much more precise
values than the ones derived by packet analysis.

One software that enables access to the values of the TCP implementation of theLinux
operating system is theWeb100 toolkit[2].

Chapter 2 will be devoted do the analysis of packet traces and chapter 3 will treat access to
the TCP state variables using the Web100 toolkit.



Chapter 2

Analysis of Packet Traces

2.1 Introduction

Analysis of packet traces is the most common discipline in network tomography. It consists
of three steps: First a trace of packets must be recorded at some point of the network. Then
the recorded packets are filtered and interesting connections are selected.1 The main activity
is the off-line examination of the data either with existing tools such astcptrace[21] or with
self-written software.

Unfortunately in certain cases the traffic recorded at the measurement point does not exactly
correspond to the traffic arriving at the receiving host: Packet loss, permutation and duplication
can occur between the measurement point and the receiver or the recording software or hardware
might miss packets itself. If only the header without the payload is recorded, the analysis tool
cannot check if the receiver will drop the packet due to an incorrect checksum. Furthermore
due to changes in routing parts of the traffic might be redirected so that they do not pass at the
measurement point.

In the following we will focus on inferring thecongestion window(cwnd) and theround
trip time (RTT) from packet traces.

2.2 The Congestion Window

The idea and algorithm presented in this section are derived from [12]. During implementation
and testing a lot of unsolved issues and ambiguities have been discovered which we will outline
as well.

1The term “interesting” can be diverse: E.g. one might want to omit incomplete connections, i.e. those with
missing beginning because parameters negotiated during connection setup cannot be restored easily.

24
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2.2.1 Motivation and Idea

As described in 1.3.4, the throughput of a connection depends linearly on the window size. The
congestion window has thus great influence on throughput. If we know the size of the congestion
window we can furthermore determine if a TCP connection is starved for application-data2 by
comparingcwnd to the amount of data actuallyin flight. Carefully observing the manner in
which the congestion window changes in response to loss also allows to distinguish the different
TCP flavors described in 1.4.5 or even to discover non-conformant TCP implementations.

The basic idea of the algorithm developed by the authors of [12] is to simulate the state of
the two TCP hosts by assuming that packets observed at the measurement point are an exact
representation of what the hosts receive with some time lag.

Figure 2.1:TCP congestion window estimation

Therefore, it is necessary that the input trace is bi-directional, i.e. that traffic in both direc-
tions is available as input. In the Internet routing is symmetric under normal circumstances, so
that this is not a very restrictive constraint.

2.2.2 The Algorithm

The TCP simulation takes the form of a finite state machine (FSM) that changes state for every
segment it receives. The state is represented by the TCP variablescwnd, ssthresh and

2That means that the connection could support a higher transfer rate if more data was available from the sending
application.
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the current congestion avoidance mechanism: slow start, congestion avoidance or fast retrans-
mit. cwnd is initialized to two segments since this is the most widespread value foricwnd .3

ssthresh is initialized to 65535 bytes. The initial congestion avoidance mechanism is slow
start.

This “streaming” design allows for high performance since the algorithm processes every
segment only once and does not backtrack nor reverse previous state transitions. Hence, it is
suitable for analyzing a huge amount of concurrent connections.

Since there are different flavors of TCP the algorithm instantiates multiple FSMs, one for
every flavor to be simulated.

Every FSM reacts to an acknowledgement of new data by increasingcwnd appropriately
depending on the current congestion avoidance mechanism (slow start, congestion avoidance or
fast retransmit). It reacts to the reception of three duplicate ACKs according to its flavor. After
the reception of new datacwnd is reset to two segments.4 This is a heuristic for the requirement
in RFC 2581 [4] to resetcwnd to icwnd after no data has been sent for a longer period than the
retransmission timeout. Note that this heuristic fails for truly bidirectional connections where
both hosts send data at the same time. This is not common for most network applications,
however, we have observed this with peer-to-peer communication over the eDonkey protocol
and Internet telephony using theSkypesoftware.

For every data packet sent, every FSM instantiation verifies if this is permitted according to
the current value ofcwnd. If the amount of sent but not yet acknowledged data is greater than
the assumed congestion window, a violations counter is incremented. We assume at any time
that the FSM with the lowest number of violations represents the sender’s actual TCP flavor.

In many cases the flavors are undistinguishable since their behavior only differs in case of
packet loss.

2.2.3 Sources of Inaccuracy

Methodical Deficiencies

As already mentioned there is a time lag between the moment the measurement point observes a
segment and the moment the segment arrives at the receiving host resulting in a change of TCP
state. Consequently subsequently observed packets in the opposite direction might have been
sent before the change of state.

This poses a severe problem to flavor identification: When three duplicate ACKs are ob-
served at the measurement point, the algorithm assumescwnd to be decreased. This is correct,
but new data segments might already have been in flight before the sender actually decreased
its window. Since the algorithm performs the change in state immediately, it will misinterpret

3The pseudo code in [12] initializescwnd to one segment, which is a choice that does not represent reality well.
4In the pseudo code in [12] it is reset to only one segment.
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following data packets exceedingits simulatedcwnd value as violations falsifying flavor iden-
tification.

A related problem not at all discussed in [12] is that the flight size — that is the number
of packets sent but not yet acknowledged — cannot be trivially determined from the measure-
ment’s point of view. The observation of a data segment increases the flight size, whereas the
observation of an acknowledgement decreases it. The further the measurement point is away
from the sender, the later it sees data segments and the earlier it sees the corresponding ac-
knowledgements. Consequently the inferred flight size is smaller than the one perceived by the
sender, up to near zero if the measurement point is near the receiver.5 Consequently the further
the measurement point is away from the sender the less likely it is to observe violations and the
more likely it is that the three tested flavors are indistinguishable.

Furthermore the algorithm detects loss only if indicated by three duplicate ACKs and not by
a timeout.

Another scenario not well-handled by the algorithm is whether the application suspends the
generation of new data for more than the retransmission timeout. RFC 2581 [4] demands that
the congestion window is reset toicwnd in that case.

Problems Due to Multiplicity of TCP Implementations

More inaccuracies arise due to the great number of different TCP implementations deployed in
the Internet that a passive approach is unable to distinguish. The three principal flavors described
in 1.4.4 do by far not cover all prevalent implementations.

Padhye et al. [22] and Medina et al. [19] examined the evolution of TCP extensions, imple-
mentation details and violations of the TCP standard in 2001 respectively in 2004 by actively
probing the most frequented web servers in the Internet. By sending purposefully constructed
TCP segments to the servers the authors provoked responses that revealed certain implementa-
tion details. The insights relevant forcwnd estimation will be presented in the following.

The initial congestion window (icwnd ) should be one or two segments according to RFC 2581
[4] or up to four segments according to the experimental RFC 2414 [3]. Medina et al. [19]
measured that 42% of the probed web servers use anicwnd of one segment, 54% set it to two
segments, 5% to three or four and 1% to more than four. The authors of the algorithm [12] claim
that they were able to infericwnd by counting the number of data segments observed before
the first ACK segment. However this isnot possible if the measurement point is too near the
receiver: When the first ACK is observed, more data packets mights already have been in flight
before the observed ACK arrives at the data sender resulting in an underestimation oficwnd .
Furthermore this method does not work for a small advertised receiver window (rwnd ): In that
— rather theoretical — case it is ambiguous ifrwnd or icwnd limits the number of segments

5In the latter case the delay between a data segment and its corresponding acknowledgement should be minimal
so that never more than one segmentseemsto be unacknowledged.
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in the first flight. If icwnd is misjudged, all followingcwnd estimates will be incorrect as well
since every change depends on the previous value.

Medina et al. [19] discovered another detail wrongly implemented in 3% of the hosts: They
do not halve the congestion window after loss. The algorithm would thus underestimatecwnd

if applied to one of these hosts.

RFC 2861 [9] specifies thatcwnd should not be increased as described in the original TCP
specification if the sending application or the advertised receiver window is limiting throughput
in order to avoid bursts after the limitation disappears. Medina et al. [19] measuredcwnd

after a period of receiver limited throughput: About 70% of the probed web servers used some
limitation of cwnd growth, but more than half of them limited growth only less than demanded
by RFC 2861 [9]. About 16% seemed to perform slow start normally, and 0.6% showed a
congestion window even larger that after regular slow-start. Since the behavior after application
or receiver limited throughput is so diverse and cannot be inferred in a passive approach, this
observation adds great uncertainty to the algorithm in those cases.

2.3 The Round Trip Time

2.3.1 Definition and Motivation

The round trip time (RTT) is defined as the total time between a sender transmitting a segment
and the reception of its corresponding acknowledgement. This interval includes propagation,
queueing, processing and other delays at routers and end hosts [27].

The RTT is an important metric to evaluate the performance of a TCP connection: Assuming
a constant window size, the throughput of a TCP connection depends inversely proportional on
the RTT.

Besides, changes in the RTT during the lifetime of a connection are of great interest since
an increase might indicate that the queue of an intermediate router is filling up which in turn is
likely to be an indication of network congestion.

Inferring the round trip time from a measurement point somewhere between the two end
hosts is by far not as trivial as for the TCP implementation at the sending host. Researchers
have developed numerous approaches in recent years which will be presented together with
their preconditions, strengths and drawbacks in the following sections.

2.3.2 SYN-ACK Method

One way to measure only one round trip time sample per connection is to observe the SYN
and the ACK segment exchanged during three-way handshake. This simple method has been
described in several publications, e.g. in [14].

The idea is to take the time interval between the SYN and the ACK segment (first and third
arrow in figure 2.2) as an estimate for the round trip time. If the delay jitter that is introduced in



2.3. THE ROUND TRIP TIME 29

Figure 2.2:RTT derived from three-way handshake

the network between these two segments is not significant, the measured interval corresponds
accurately to the delay perceived by the TCP client6.

If the initial SYN is retransmitted due to a time-out, its last occurrence must be considered.
If the ACK is lost before the measurement point, the interval between the last SYN and the
first ACK may include a retransmission timeout and the estimate must be discarded in that case.
RFC 2988 [24] demands an initial retransmission timeout of 3 seconds.

Inaccuracy is introduced only if the SYN-ACK segment from the TCP server or the ACK
segment from the TCP client is delayed. One reason for that can be firewalls or packet filters.
However, practice shows that this delay is negligible.

If we have access to a bidirectional trace we can infer the approximate position of the mea-
surement point relative to the two hosts as a side effect: If the interval between SYN and SYN-
ACK is very small compared to the interval between SYN-ACK and ACK, the measurement
point is located near the TCP server and vice versa. If there is no great difference between the
two intervals, the measurement point is somewhere in the middle of the path.

If we have only access to the segments transmitted from TCP server to client, [27] pro-
poses to measure the time interval between the SYN-ACK segment and the first observed data

6We will refer to the host that requested the connection as theTCP clientand to the host that accepted the
connection as theTCP server.
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segment. This is very doubtful since depending on the application the TCP server does not nec-
essarily send data as soon as the connection is established, which would cause an overestimation
of RTT.

Surprisingly, Zhang et al. [35] claim that “the SYN-ACK handshake tends to underestimate
the actual round trip time”. However, Shakkottai et al. [27] contradict and state clearly that
the three-way handshake method doesnot underestimate the round trip time compared to two
other methods they developed examining the data flow during the connection. One possible
explanation for the observation by the former ones might be that a considerable part of the TCP
connections they analyzed contributed to queue growth and thus provoked an increase in round
trip time during data transfer. An example is given in figure 2.3.

That would mean that the estimate from three-way handshake is only improper as an average
RTT value for the connection but must rather be considered as an estimate for the round trip time
only valid at the beginning of the connection.
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Figure 2.3:The round trip time increases due to queueing.

2.3.3 Measurement Point near the Sender

If we have inferred from the SYN-ACK method that the measurement point is located near
one of the two hosts, say on the same LAN or even on the same host, we can easily measure
the round trip time for every data segment sent from that host: We only need to associate the
sent data packet with the received corresponding ACK segment as shown in figure 2.4. If no
loss has occurred, the acknowledgement number of the ACK in question is the data segment’s
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sequence number plus its length. If loss has occurred, the duplicate acknowledgement number
is ambiguous and the association cannot be made. This is exactly how that the TCP sender
measures the round trip time in order to adjust its time-out value (see e.g. [6]).

Figure 2.4:RTT estimation with measurement point near the sender

The only inaccuracy is that we neglect the propagation delay from the sender to the mea-
surement point and back, which is very low given that the trace was recorded near the sender.

An uncertainty worth discussing is the use of delayed acknowledgements (see 1.4.4) which
is widely deployed in today’s Internet: The RTT estimate includes the delay imposed by the
receiver. One approach could be to detect and filter delayed acknowledgements. Since RFC
1122 [5] demands an undelayed ACK for every second data segment, one could develop a
heuristic for determining which ACK has not been delayed. On the other hand one can argue
that the delay imposed by the receiver is part of the round trip time perceived by the sender and
should thus also be part of the estimated RTT.

2.3.4 Based on Knowledge about the Congestion Window

The method presented in this section is derived from and explained in detail by Jaiswal et al.
[13].

The approach described in the previous section fails if the measurement point isnot located
near the TCP sender. The delay from the sender to the measurement point and back could not
be neglected in that case. The basic idea of Jaiswal et al. is illustrated in figure 2.5. Since we are
not able to directly measure the sender’s RTT sample, we instead measure(i) the round trip from
the measurement point to the receiver and back and(ii) the round trip from the measurement
point to the sender and back. The sum of the two delays is our estimate of the round trip time.

If the two measured delays did not change from one segment to the next, the RTT estimate
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Figure 2.5:RTT estimation based on knowledge about the congestion window

would be exact. In reality however, these quantities vary and the estimate can only be approxi-
mate.

The association of the data segment to the corresponding ACK segment is trivial and has
been described in 2.3.3. We will refer to it as thefirst associationin the following.

The far greater challenge is to infer which next data segment has been triggered by the ACK,
which we will refer to as thesecond associationin the following.

Therefore, we need to know the congestion window at the moment the ACK arrived at the
sender. As shown in 1.4.5, the TCP sender updatescwnd upon reception of an acknowledge-
ment and sends the next pending data segment if the amount of unacknowledged data plus one
segment size is smaller than the congestion windowand smaller than the receiver’s advertised
window. Hence, the sequence number of the next triggered data segment is the acknowledge-
ment number of the ACK plus the minimum of congestion and receiver window minus one
segment size.

That means that the method relies on the algorithm by the same authors described in 2.2
that inferscwnd. Its accuracy depends on the correctness of the latter: An overestimation
(underestimation) ofcwnd leads to an overestimation (underestimation) of the round trip time:
From the explanation above it follows directly that ifcwnd is overestimated, a subsequent new
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data segment (third arrow in figure 2.5) is considered instead of the correct one, resulting in an
overestimation of RTT.

If a flow recovers from loss, we must interrupt the RTT estimation because the first asso-
ciation cannot be made any more. This is similar to the RTT measurement performed by the
sender. The RTT estimation must resume as soon as the lost segment has been retransmitted.
Both conditions are already tracked by the algorithm that calculates the congestion window and
can be reused for this purpose.

A problem not at all mentioned by [13] are application limited senders. Assume an appli-
cation generates data slower than TCP could send them7. This would introduce a certain delay
between the reception of the acknowledgement and the sending of that new data segment that
the algorithm incorrectly would include in the round trip time estimate.

So if we want to use this algorithm without making restrictions on the kinds of traffic to
analyze we need to identify the state of application limited transmit.

One possible way to accomplish this would be to consider only those data packets for the first
association that use the full MSS and do not have thepushflag set. The rationale behind these
conditions is that a TCP implementation that has more data ready to send would not generate
unneeded overhead by using a smaller segment size than allowed. An application would set the
push flag to force the TCP to immediately transmit the segment, which is usually an indication
that it expects an answer from the remote side and has thus no more data to send instantly8.

Note that theNagle algorithm[30] can still introduce unrecognized cases of application
limited transmit. This algorithm forces the TCP sender to accumulate small chunks of data as
long as a non-MSS size segment has not been acknowledged. As a result one might observe full
MSS size segments that have nevertheless been delayed by the sender and the heuristic would
fail.

2.3.5 Timestamp Method

The method presented in this section is derived from and explained in detail by Veal et al. [33].

The previously presented method has one major drawback: Its accuracy depends on the ex-
act estimation of the congestion window. As we have shown in 2.2 this cannot be achieved in
many cases. Thus it would be useful to find a more exact way to find out which acknowledge-
ment triggered the sending of which new data segment.

RFC 1323 [11] introduced a TCP option for improving round trip time estimation at the
TCP sender particularly onlong, fat pipes, that are Internet paths with high bandwidth and high
delay like over satellite links for example. We can benefit from this extension for passive RTT
estimation as well.

7We observed this for example with peer-to-peer applications that can limit the consumed bandwidth to a value
chosen by the user.

8We have observed though that the Linux 2.4 kernel sets the push flag sometimes even if the send buffer is not
empty. In that case an RTT sample would be skipped unnecessarily.
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The TCP option contains two 32 bit values: One timestamp set by the sender of a segment
and an echo of the last timestamp the sender received. If both hosts support that option, every
TCP sender can continuously measure the round trip delay by measuring the interval between
the sending of a certain timestamp and the reception of its echo. Note that the hosts do not need
a synchronized time nor do they need a common unit of time because they do not interpret the
value from the respective opposite host but only echo it.

Figure 2.6 provides an example. The sender transmits a segment at timex. The receiver
responds with an ACK at timey and echoes the sender’s timestampx. Upon receiving the
ACK, the sender transmits new data at timez and echoes the receiver’s timestampy.

Figure 2.6:RTT estimation based on timestamps

Veal et al. [33] probed 500 well known web servers in an active way and found out that
76.5% of them supported the timestamp option. The authors assume that the deployment of that
option will even increase over time. Note however, that both hosts must support the timestamp
option so that it will be used in a connection.

We can benefit from this TCP option by replacing our error-prone second association: The
data packet that was triggered by the ACK is simply the one that echoes the ACK’s timestamp.

The timestamp granularity depends on the TCP implementation. Veal et al. [33] found out
with their active probe that most of those web servers who support the timestamp option use a



2.3. THE ROUND TRIP TIME 35

granularity of 10 ms (54.8%) or 100 ms (36.9%). Only few use 1 ms (7.2%) and almost none
use more than 100 ms (1.1%).

Even with a fine granularity it may happen that segments carry the same timestamp, for
example in a burst after the congestion window has been opened. Since the measurement point
cannot determine which data segments caused which ACKs in that case, it must associate only
the first segment that carries a certain timestamp with the first echo and discard all following
segments with the same timestamp. As a result this method returns at most one RTT estimate
per timestamp unit, which is a very acceptable constraint.

Veal et al. [33] propose to use timestamps for both associations. However, we propose to
use them only for the second association because that is the one that introduced great inaccuracy
as described in the previous section. The first association has worked well as long as no loss has
occurred and besides does not suffer from the timestamp granularity problem9.

The problem of application limited transmissions is the same as described in the previous
section. The heuristics to filter samples where this is the case can — and have to — be applied
correspondingly.

2.3.6 More Approaches

The following approaches for estimating the round trip time are not relevant for the software
developed in the context of this thesis. They are only presented to give an overview about what
other methods exist.

Identification of Flights

In [35] Zhang et al. describe theirRound Trip Time Estimatorwhich is part of theirTCP Rate
Analysis Tool (T-RAT)aiming at determining what is limiting throughput in a TCP connection.
The algorithm does not require a bidirectional trace but is in turn judged by the authors as not
highly accurate.

The algorithm first generates a set of 27 candidate RTT values exponentially distributed
between 3 ms and 3 seconds. Then it groups the packets into potential flights in the following
way: P0 is the first packet of a flight at timeT0. Let P1 be that packet betweenT0 + RTT

and T0 + 1.7 · RTT 10 with the largest inter arrival time11. Let P2 be the first packet after
T0 +1.7 ·RTT . If P2 > 2 ·P1 assume thatP2 is the first packet of the next flight, otherwiseP1.

The set of flights is then evaluated by trying to match its behavior to that of TCP: If four
consecutive flights showadditional increase inflight size, i.e. the number of bytes transmitted
in the flight, the state of the first flight is set tocongestion avoidance (CA). If four consecutive
flights showmultiplicative increase in flight size, the state of the first flight is set toslow start

9If we demanded that both the timestamp of the first data segments and the one of the ACK have not been seen
before this would be a pretty hard constraint for small round trip delays and coarse timestamp units.

10The constant factor takes account of RTT variance. The value of 1.7 is empirically optimal.
11The inter arrival time is the interval between the arrival of the last and the current packet.



36 CHAPTER 2. ANALYSIS OF PACKET TRACES

Figure 2.7:Flights of a TCP bulk data transfer: short inter arrival times within the flight, long inter
arrival times between flights

(SS). If loss occurred within four consecutive flights or if the bahavior cannot be matched to the
the two former TCP states, the state of the first flight is set tounknown (UN). Each candidate
RTT is assigned a score amounting to the number of flights in stateCA or SSbut notUN. That
candidate RTT with the highest score is chosen as the RTT estimate.

Flight Method

Shakkotai et al. aim at estimating one average RTT per TCP connection and require only a
unidirectional packet trace for theirflight method[27].

TCP’s slow start and congestion avoidance algorithm create so calledflights, that are groups
of segments sent back to back. Since every flight is triggered by the reception of one or more
ACKs, the time between the leading edges of two successive flight corresponds to the round trip
time (figure 2.7).

From the measurement point’s perspective a flight appears as a sequence of segments with
nearly identical (relatively small)inter arrival times (IAT)followed by one larger IAT.

The algorithm by Shakkottai et al. simply considers the difference between two successive
IATs. If the difference is smaller that a defined threshold, it assumes that the corresponding
packet belongs to the ongoing flight. Otherwise it assumes that the segment is the beginning of
the next flight. The difference between the leading edges of two successive flights is taken as
one RTT sample. The connection’s estimated RTT is the average of all samples.
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The main reason why Shakkottai et al. required only one RTT value per connection is that
they examined the RTT distribution among a large number of flows. However, we assume that
the samples taken by the algorithm contain so many outliers that only the average of all samples
can be trusted. For our purpose of tracking the changes of the RTT over the time of a connection
we judge the algorithm to be too imprecise, though.

The authors have also studied the nature of flights and found that flights are not a common
phenomenon and that their average size is very small12. They conclude that the cause for flights
is a small window. The observation that flights can much easier be identified during slow start
than during congestion avoidance supports this thesis.

We believe that one technical reason is that queueing in routers contributes significantly to
blurring of flights.

Discrete Autocorrelation of Inter-Arrival Times

Veal et al. [33] have enhanced the flight method presented in the previous subsection. First,
they do not take the time at which a segment has been observed at the measurement point into
account but the TCP timestamp (RFC 1323 [11]) set by the sender. This moderates the blurring
introduced by queueing between the sender and the measurement point. Second, they do not
measure the pure inter arrival times but infer the round trip time by discrete autocorrelation of
the number of packets per time slot. Unlike the flight size method this allows to detect more
complex patterns than just alternating bursts and gaps.

Discrete autocorrelation measures how well a data set is correlated with itself at a certain
offset. If the correlation is strong, the data matches its offset closely. The offsets with a high
correlation are candidates for the frequency of recurring patterns in the data set. The strength of
the maximum correlation is a degree of how repetitive the data set is. An example is given in
figure 2.8.

The algorithm by Veal et al. uses discrete autocorrelation to make RTT estimates. It repeats
the RTT estimation once per measurement intervalT which is supplied as a parameter. During
this interval, the number of packets that arrive at timestampt is stored in arrayP [t] ranging
from 0 toT − 1. When the count is complete, the discrete autocorrelationA[l] is computed for
each offsetl from 1 toT/2. The RTT estimate is computed as max(A).

The process is repeated in order to produce multiple estimates over time of the TCP connec-
tion.

The algorithm is constraint by timestamp granularity and the measurement interval. Accord-
ing to Nyquist’s theorem, the sampling resolution must be at least twice the maximum desired
frequency to be sampled. For the algorithm of Veal et al. this means that the timestamp gran-
ularity has to be at most half of the round trip time. Half of the measurement interval chosen

12They constat that flight sizes larger than 7 packets are very rare. This is much smaller than the expected conges-
tion window size.
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Figure 2.8:Autocorrelation for self-clocking patterns (taken from [33] with the author’s permission)

places an upper bound on the maximum RTT that can be measured since at least two complete
round trips are needed to fully compare one round trip with its offset.

Rate Change Method

Shakkotai et al. [27] base theirRate Change Methodon a fluid view of TCP rather than a packet
view and require only a unidirectional trace.

The fluid view does not consider the data flow on a packet level but rather

• the number of bits transferred

• the data rate, which is the number of bits transferred per time, which is the first derivative
with respect to time

• the change in data rate, which corresponds to acceleration, which is the second derivative
of bits transferred with respect to time.

We know from section 1.4.5 that the change in data rate in congestion avoidance (during
periods without loss) is one segment size per round trip time. With this knowledge the authors
were able to set up an equation that allows to calculate the round trip time (RTT) against the
change in the number of bits transferred (x) per time (t):

RTT =
√

MSS
d2x
dt2

(2.1)

Hence, their algorithm considers sets of ten packets each by summing up the size of data
transmitted, measuring the time elapsed and inserting both values into the equation above. Since
the change in data rate is different during slow start, the algorithm discards the first 15 packets.
Also the last measurement is discarded since at the end of a transfer the data does not fill a
complete window any more. Finally the algorithm calculates the average of all RTT samples.
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Figure 2.9:Fluid view of TCP: The slope depends on the RTT

We have implemented this algorithm as an experiment and found out that it does not work
in cases where queueing has equalized the data rate resulting in a slope that is 0.

2.3.7 Summary of RTT Estimation Methods

We have presented numerous approaches to deduce the round trip time from a packet trace.
Those methods that require only unidirectional traces mainly rely on the identification of flights
that recur with a frequency that corresponds to the round trip time. Those methods that consider
segments in both directions of a connection have the potential of being more exact and returning
more samples. The methods that use the TCP timestamp option can only be applied to connec-
tions where both hosts support that option. The observation of the messages exchanged during
three-way handshake returns only one RTT sample per connection, whereas the other methods
track the RTT during the whole connection. Finally, the rate change method has been presented
as the only approach based on a fluid model of TCP.

2.4 Requirements

We have written a software that infers the round trip time from packet traces. For this software
we established the following requirements.
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2.4.1 Choice of Algorithms

The software must implement

• the algorithm by Jaiswal et al. [12] to emulate the congestion window.

• the three-way handshake method, including the decision where the measurement point is
located

• the measurement near the data sender

• the two methods that associate three segments to infer the round trip time: the algorithm
by Jaiswal et al. [13] relying on the knowledge of the congestion window and the algo-
rithm by Veal et al. [33] relying on the TCP timestamp option, depending on whether or
not the TCP timestamp option is present. We will refer to those two asthe three-way
algorithmsin the future.

These algorithms have been chosen because the system in which the software will be de-
ployed disposes only of bi-directional TCP traces, and in many cases the traces were actually
generated on the sending host so that the trivial method of measuring the delay between data
packet and corresponding acknowledgement is often sufficient.

The combination of the timestamp method and the Jaiswal algorithm relying on the knowl-
edge about the congestion windows allows the three-way measurement to be as exact as possi-
ble: The timestamp method is less error-prone than the Jaiswal algorithm, but since not all TCP
hosts use the TCP timestamp option, the software can fall back to the Jaiswal algorithm.

Since the three-way algorithms only return values for non-application limited bulk transfers,
the three-way handshake method guarantees that at least one round trip time sample can be
returned for every trace.

The other algorithms mentioned in 2.3.6 are only useful for calculating one average round
trip time per connection, but for the software being developed our objective was to be able to
track the changes in round trip time over the time of the whole connection as far as possible.

2.4.2 Environment

The software is to be integrated into three software programs:

• a command line tool that readstcpdumptraces and prints time / RTT pairs to the standard
output

• a command line tool that queries a PostgreSQL database holding traces (see [28]) and
prints time/RTT pairs to the standard output

• a PostgreSQL database function that reads a trace from a table and returns a relation
containing the time/RTT pairs.
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2.4.3 Interfaces

To facilitate the integration into the three environments named above we chose the raw TCP
header and options as input format. They should always be reconstructible even if certain en-
vironments will only have interpreted data available — such astcpdump’s ASCII output or the
database format specified in [28].

For retrieving the round trip time estimates, the frame software must register as notification
handler function at the beginning.

2.5 Design and Implementation

The chosen algorithms have been implemented in C++. C++ is a good choice that allows an
object oriented and thus more structured software design than pure C, and the written classes
can nevertheless be used from a C frame program as it is the case when writing a PostgreSQL
module.

The UML class diagram in figure 2.17 shows only those attributes (member variables) and
operations (member methods) that are relevant for thecwnd and RTT calculation. Details of
debugging, configuration and output have been omitted for clarity.

2.5.1 The Connection Class

TheConnection class represents a TCP connection.

The constructor takes threebool parameters so that the calling routine can indicate to the
class which measurement methods should be used: the SYN-ACK method, the measurement
near the sender and/or the three-way methods.

The calling routine first registers an event handler using thesetNotificationHand-

ler method. The class and its member classes will call that registered handler whenever a new
RTT sample has been calculated.

Then the calling routine passes packets in both directions to the class by calling thetrans-

mitPacket method. With this design the class can be used in real time environments where
the RTT samples are calculated just as the packets are captured.

The Connection class tracks the three-way handshake by updating theTCPPseudo-

State member variable upon transmission of a SYN, SYN-ACK or ACK segment. We call the
state known to theConnection class only a “pseudo state” because actually both hosts have
their own state representing the progress of the handshake. The fact that a handshake message
can get lost between the measurement point and the receiver is neglected here.

Tracking the three-way handshake is good to infer three kinds of information. First, con-
nection specific parameters such as the maximum segment size (MSS) and whether the TCP
timestamp option is used (supportsTimeStamps ) can easily be deduced. Second, the first
RTT sample is measured as described in 2.3.2. Third, it can be inferred whether the measure-
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ment point is near one of the two hosts: If the delay between SYN and SYN-ACK is at least
10 times the delay between the SYN-ACK and the ACK, the software infers that the trace has
been captured near theserver. If the delay between SYN-ACK and ACK is at least 10 times the
delay between the SYN and the SYN-ACK segment, the software infers that the trace has been
captured near theclient. If none of the two conditions are true, we assume that the measurement
point is not near one of the two hosts and that the simple method of measuring the delay between
data segment and corresponding acknowledgement is not sufficient. The result is stored in the
member variableWANSendDir.

The Connection class furthermore implements the actual round trip time measurement
near the sender (if it has deduced that this is possible). The real TCP sender has only one single
timer and thus takes only one sample per round trip. The software however holds two queues
with the acknowledgement number whose reception is expected and the timestamp when the
corresponding data segment has been sent. This allows to take as many round trip time sam-
ples as acknowledgements are received. So whenever a data segment in the proper direction
is processed the corresponding acknowledgement number (which is the sequence number plus
the data length) and the current timestamp are inserted into the two queues. Whenever a pure
acknowledgement in the proper direction is processed all queue entries with a smaller acknowl-
edgement number are discarded.13 The difference between the stored timestamp at the head
of the queue and the current timestamp of the acknowledgement is the current RTT estimate,
which is exported by calling the notification handler.

2.5.2 The Host Class

TheHost class represents one of the two hosts of a TCP connection. It is instantiated twice by
theConnection class after observation of the three-way handshake. ThetransmitPacket

method of theConnection class calls thesendPacket method of oneHost object and the
receivePacket method of the other.

The three-way RTT measurement methods are implemented in theHost class because both
hosts can potentially be bulk data senders and receivers. Simply instantiating twoHost objects
makes case differentiation unnecessary and the design easier to understand.

For the three-way RTT measurement methods (figures 2.5 and 2.6) we need to associate a
data segment with its corresponding acknowledgement and that acknowledgement with the data
segment which the sending host transmits directly after the reception of the latter one. The first
association in both cases is that the acknowledgement number must be the sequence number of
the data segment plus the data length. The second association is made either by comparing the
TCP timestamp of the acknowledgement to the TCP timestamp echo of the new data segment
in case the TCP timestamp option is present or by predicting with the knowledge of the current
congestion window (Jaiswal et al.) which sequence number the acknowledgement segment will
trigger.

13This is for example necessary if the receiver usesdelayed ACKsor if a previous acknowledgement has been lost.
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The original algorithms in [13] respectively [33] can only infer one RTT sample per round
trip. However, theHost class of this software can handle multiple three-way associations
at the same time by storing the information necessary to make the associations in the queues
waitForAck , waitForAckTS , waitForNewData andwaitForNewDataTS .

The queueswaitForAck andwaitForAckTS are needed to track the first association:
Whenever a full MSS data segment without push flag is sent, the expected acknowledgement
number is inserted intowaitForAck and the current timestamp intowaitForAckTS .

The queueswaitForNewData andwaitForNewDataTS are needed to track the second
association: Whenever a pure acknowledgement is received all queue entries with a smaller
acknowledgement number are discarded again. If the TCP timestamp option is present, the TCP
timestamp is inserted into thewaitForNewData queue. Otherwise the acknowledgement
number plus the current congestion window minus one segment size is inserted. The timestamp
from the top of thewaitForAckTS queue is inserted into thewaitForNewDataTS queue.

Whenever a data segment is sent, its TCP timestamp echo respectively its sequence number
is compared to the beginning of thewaitForNewData queue: If the beginning of the queue
is equal to the TCP timestamp echo of the data segment respectively greater or equal to the
sequence number, a new RTT sample, which is the difference between the current timestamp
and the beginning of thewaitForNewDataTS queue, is exported via the notification handler.

The number of consecutive duplicate ACKs is kept in the member variablenumDupacks .
If the number is greater or equal to 3, which means that the sender will infer a packet loss, the
measurements is interrupted for the reasons explained in 2.3.4.

2.5.3 The SlaveFSM Class and its Subclasses

The classSlaveFSM and its derived subclassesTahoeFSM, RenoFSMandNewRenoFSM

mimic the changes of the congestion window depending on the TCP flavor as described in
1.4.5. Furthermore, they countviolations, that is the transmission of excessive data segments
so that the number of current unacknowledged packets is greater than allowed by the assumed
congestion window.

TheHost class instantiates every one of the three classes and passes received and sent seg-
ments along to thereceivePacket respectivelysendPacket method of everySlaveFSM

object.

TheHost class can estimate the flavor of the TCP sender by fetching the number of vio-
lations (getViolations method) and inferring that the object with the smallest number of
violations represents the assumed TCP implementation. In many cases, however, the number of
violations is equal and the flavor indistinguishable.

The differences of the Tahoe, Reno and NewReno flavor have been described in 1.4.5 and
are depicted in pseudo code in figures 2.10, 2.11 and 2.12.cwnd is always initialized to two
segments andssthresh to 65535. rwnd represents the receiver window; flightsize is the
number of sent but unacknowledged packets.
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reception of action
pure and new ACK if (cwnd <= ssthresh)

cwnd = cwnd + MSS

else

cwnd = MSS * MSS / cwnd + MSS / 8

third or more ssthresh = max(min(rwnd, cwnd) / 2, 2 * MSS)

duplicate ACK cwnd = 1

data segment cwnd = 2 * MSS

Figure 2.10:Pseudo code forcwnd handling in TCP Tahoe

reception of action
pure and new ACK if (state == DEFAULT)

if (cwnd <= ssthresh)

cwnd = cwnd + MSS

else

cwnd = MSS * MSS / cwnd + MSS / 8

else if (state == FAST_RECOVERY)

cwnd = ssthresh

state = DEFAULT

third or more if (state == DEFAULT)

duplicate ACK ssthresh = max(min(rwnd, cwnd) / 2, 2 * MSS)

cwnd = ssthresh + 3 * MSS

state = FAST_RECOVERY

else if (state == FAST_RECOVERY)

cwnd = cwnd + MSS

data segment cwnd = 2 * MSS

state = DEFAULT

Figure 2.11:Pseudo code forcwnd handling in TCP Reno

2.6 Integration

2.6.1 Command Line Tool that ReadstcpdumpTraces

tcpdumpis a very common open source tool to capture, filter and process network traffic [26].
It can process live traffic as well as record traffic to a file or process previously recorded traffic
from a file.

We wrote a software that can read and parse files generated bytcpdumpand that passes the
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reception of action
pure ACK if (state == DEFAULT)

if (cwnd <= ssthresh)

cwnd = cwnd + MSS

else

cwnd = MSS * MSS / cwnd + MSS / 8

else if (state == FAST_RECOVERY)

if (ack >= recover) // ACK is new

cwnd = ssthresh

recover = 0

state = DEFAULT

else // ACK is partial

cwnd = cwnd - amount of ack’d data + MSS

third or more if (state == DEFAULT)

duplicate ACK ssthresh = max(min(rwnd, cwnd) / 2, 2 * MSS)

cwnd = ssthresh + 3 * MSS

recover = next expected sequence number

state = FAST_RECOVERY

else if (state == FAST_RECOVERY)

cwnd = cwnd + MSS

data segment cwnd = 2 * MSS

if (state == FAST_RECOVERY)

recover = 0

state = DEFAULT

Figure 2.12:Pseudo code forcwnd handling in TCP NewReno

TCP segments of the first connection encountered along to the classes described in the previous
sections.

Thepcapfile format generated bytcpdumpis very basic: Apcap file header structure
at the beginning of a file gives general information about the captured trace such as timestamp
accuracy and captured packet length. The captured Ethernet frames are saved sequentially, each
preceded by apcap pkthdr structure depicted in figure 2.1314.

Every TCP segment (transport layer) is embedded in an IP packet, and every IP packet
(network layer) is embedded in an Ethernet frame (data link layer). So the actual payload is
preceded by three protocol headers as depicted in figure 2.14.

14len is the actual length of the frame, whereascaplen is the length captured to the file. Usually one would
limit the packet size so that only the headers and not the transmitted data are saved.
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struct pcap_pkthdr {

struct timeval ts; / * timestamp * /

bpf_u_int32 caplen; / * length of portion present * /

bpf_u_int32 len; / * length this packet (off wire) * /

}

Figure 2.13:The pcappkthdr structure from pcap.h

protocol unit size
Ethernet header 14 bytes
IP header 20 bytes
TCP header 20 bytes (plus options)
payload variable

Figure 2.14:Headers and payload for TCP over IP over Ethernet

The software instantiates aConnection object, opens the pcap file, skips thepcap -

file header structure and steps from packet to packet.

The software stores the quadruple specifying the first TCP connection — IP address and
port number of source and destination — and passes all segments belonging to that connection
to theConnection object. No preprocessing is necessary because theConnection class
understands the raw TCP header and options format.

The notification handler exports the pair of timestamp and round trip time estimate to the
standard output every time it is called.

2.6.2 Command Line Tool with Database Access

M. Siekkinen et al. [28] have proposed “to use a database management system (DBMS) that
provides the infrastructure for the analysis and management of data from measurements, related
metadata, and obtained results”.

The main advantages compared to keeping the traces in files is that the raw data can be
annotated and stored in a well-organized way together with the results of analysis, that the
analytic cycle can be shortened because iterative analysis can easily re-use previous results, and
that the issue of scalability can be left to the DBMS.

The department where this software has been developed uses PostgreSQL 7.4 [32], an open-
source rational DBMS with a widespread user community.

The layout of the tables that hold TCP traces is depicted in figure 2.15. Theconnection ID
specifies a connection and replaces the quadruple of IP address and port number of source and
destination. Thetrace ID specifies a trace which is a collection of connections. Thus a tuple of
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trace ID and connection ID specifies one TCP connection in the database. One table holds one
trace. For a detailed explanation and the full Entity Relationship Diagram please refer to [28].

column name type description
ts timestamp timestamp
flags character varying(5) flags intcpdumpsyntax
startseq bigint sequence number
endseq bigint sequence number plus data length
nbbytes smallint data length
ack bigint acknowledgement number
win integer receiver advertised window
urgent integer urgent pointer
options character varying(100) TCP options intcpdumpformat
cnxid integer connection ID
reverse bit(1) direction of packet
tid smallint trace ID

Figure 2.15:Database table layout

We wrote a command line tool that takes a table name and a connection ID as parameters,
queries the database for the packets, reconstructs the raw TCP header and options and passes
them to the classes described in section 2.5.

The libpq library “is the C application programmer’s interface to PostgreSQL. libpq is a set
of library functions that allow client programs to pass queries to the PostgreSQL backend server
and to receive the results of these queries.” [32]

The software established a connection to the PostgreSQL server using the libpq function
PQconnectdb and callsPQexec to declare a cursor selecting all packets from the given
TCP connection ordered by their timestamps and fetching the returned rows in blocks. The
connection is terminated by thePQfinish function. For a detailed explanation of how to
access a PostgreSQL database from a C program, please refer to [32].

The rows in the database have been generated from thetcpdumptext output. Hence, certain
tcpdumppeculiarities are still visible and the following transformation must be conducted in
order to reconstruct the raw TCP header and options format:

• The data length must be calculated by subtractingstartseq from endseq .

• The sequence (and acknowledgement) numbers have been shifted so that both directions
of every connections start with the sequence number 0. The SYN and SYN-ACK seg-
ments have kept their real sequence numbers. This shift must be reversed by adding the
initial sequence number (per direction) to the numbers from the database.
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• Sequence numbers of pure acknowledgements are stored as NULL values. The latest seen
sequence number in that direction must be inserted.

• Each set flag is stored as one letter. The acknowledgement flag is always omitted. The
original bitfield must be reconstructed and the acknowledgement bit set for every segment
except for the pure SYN segment.

• The options are stored as a human readable string. The raw format specified in [25] must
be reconstructed.

2.6.3 PostgreSQL Module

PostgreSQL is highly extensible. Developers have several possibilities to write functions: A
Query Language Functionis an arbitrary sequence of SQL statements, returning the result of
the last query.Procedural Language Functionsare offered by loadable modules. There are cur-
rently four procedural languages available in the standard PostgreSQL distribution: PL/pgSQL,
PL/Tcl, PL/Perl, and PL/Python. Finally,C-Language Functions(or functions in a language
that can be made compatible to C, such as C++) can be compiled to ashared objectfile — also
known asdynamic library— and loaded by the server on demand.

We chose to write a C language function that encapsulates the classes described in section
2.5. This decision results from the fact that the classes have been written in C++. Furthermore,
since the C code is compiled into native machine code whereas the procedural languages must
be interpreted, this is the best-performing way to extend the PostgreSQL database.

The main advantage over the command line tool that queries the database is a substantially
increased performance since the data is not accessed through network communication, but the
code is running in the same environment as the database server itself. Furthermore, the output
can be used in an SQL statement like a regular relation. At best that means that it can be stored
in the database as an intermediate result as proposed by Siekkinen et al. [28].

Parameters for C language functions can be base types, composite types or sets.
Base typesare the most basic form: They can have fixed or variable size and can be passed

by value or by reference. Our functioncalc rtt takes three base type parameters as input:
The table name as a string, the connection ID as an integer and an integer number that specifies
which RTT estimation methods shall be applied.

Composite typescorrespond to a table row in a relational database. Unlike a C structure a
composite type does not have a fixed layout but is a set of tuples, that is a set of name/value
pairs. This type would be sufficient for ourcalc rtt function if we wanted to return only one
round trip time estimate together with its timestamp.

A setis a set of composite types and thus corresponds to a database table. Since our function
should return a number of round trip time estimates together with their timestamp, we had to
choose this most complicated type as return type. If a function returns a set it is actually called
continuously by the database and returns either a composite type every time it is called or signals
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to the database that it has no more rows to output. Maintenance of state between the calls of the
function is provided by PostgreSQL in form of theFuncCallContext structure. Another
way to maintain state would be the use of global variables.

The declaration of the C function is always the same: The return type isDatum and the
only input parameter is the macroPGFUNCTIONARGS, both provided by the PostgreSQL
framework. Macros for accessing the input parameters by their number and returning values are
provided as well.

TheServer Programming Interface(SPI) enables the developer of a user-defined C function
to run SQL commands. We had to use the SPI to query the table containing the packets of
the TCP connection for which the round trip time estimates should be calculated. The Server
Programming Interface’s API is very similar to the one for accessing an SQL database from an
external application. For details please refer to [32].

At the first call our user-defined functioncalc rtt calculates the round trip time estimates
using the classes described in section 2.5. Therefore, the values from the database must be
transformed into raw TCP header and options as it was the case for the command line tool
described in the previous subsection. The notification handler function that is called for every
RTT estimate stores the time/RTT pairs into a linked list that is stored as a global variable.
The first raw is returned immediately to the database. For every subsequent callcalc rtt will
return the next time/RTT pair in the linked list. If the end of the linked list is reachedcalc rtt

cleans up the allocated memory and signals to the database that it has no more rows to return.
Once the function is written and compiled to a shared object file it must be copied to the host

where the PostgreSQL server runs, the return types must be defined using theCREATE TYPE

command and the function must be loaded into the database using theCREATE FUNCTION

command. The function can then be used like a regular SQL function. An example is given in
figure 2.16.

SELECT * FROM calc_rtt(’honeypot_2005_04_05’, 47, 3)

WHERE RTT > 30 ORDER BY RTT;

ts | RTT

-----------------+---------

12:33:23.118020 | 33.667

12:33:22.676327 | 45.039

12:33:24.157109 | 60.3209

12:33:24.217835 | 60.726

12:33:24.300945 | 83.11

[...]

Figure 2.16:The functioncalc rtt can be used like a regular SQL function.
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2.7 Deployment and Future Use

The output of the two command line tools can be used to generate RTT diagrams, for example
by using it as input to the open source software gnuplot [34]. Figure 2.3 for example has been
created this way.

However, the far more important result for future research at Institut Eurécom is the database
module that has been deployed at the PostgreSQL server used by fellow researchers. One area
of application will be presented in the following.

The techniques described in section 2.3.5 will be applied in analysis of limitation cause for
obtained throughput of a TCP connection described in [29]. More specifically, RTT samples
are required in the test for receiver window limitation where they are used for estimating the
congestion window size of the TCP sender at a given time instant. In this way, the RTT samples
are not computed with the help of current congestion window value as in the work of Jaiswal et
al. [12], which was shown in this thesis to suffer from severe limitations, but contrariwise the
congestion window is calculated by reconstructing for every packet at what time it has left the
sender respectively for every acknowledgement when it has reached the data sender. Therefore,
the time measured at the measurement point must be shifted by half the round trip time.
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Figure 2.17:UML class diagram for processing of TCP traces



Chapter 3

Access to TCP State Variables

3.1 Introduction

The previous chapter has shown that it is anything but trivial to infer variables such as the round
trip time or the congestion window from TCP traces. One self-evident idea to obtain these
values is to rather read them out from the operating system of the two hosts involved in the data
transmission.

Unfortunately, no operating system allows access to its TCP variables by default. Therefore,
we will evaluate theWeb100 Toolkitthat allows access to these variables under Linux.

3.2 The Web100 Toolkit

TheWeb100 Toolkitis a software that allows to query the operating system’s kernel for a large
number of per-connection TCP state variables. In the current version it comes as a patch for the
open source Linux kernel together with a C library to access the values from user space.

The kernel code exports the structure containing the TCP state variables via the Linux/proc
file system. Thelibweb100 library contains an API for accessing the variables from within
an application. While the interface between the kernel and the library may change on other
platforms, the API oflibweb100 is supposed to persist so that applications using Web100
will be portable.

The authors of the Web100 toolkit — mainly researchers from the Pittsburgh Supercomput-
ing Center — see the following use cases for their software [17]:TCP based measurementis
what will be detailed later in this section. The variables give detailed insight into the remote
host, the network and even the communicating applications.Testing experimental algorithms
is facilitated since writable variables are provided to trigger experimental TCP algorithms or
workarounds in the kernel on a per-connection basis. Web100 is furthermore useful foreduca-
tion because it illustrates the behavior of TCP and allows to study the changes in the behavior

52
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upon changes of certain parameters such as buffer sizes.1 Finally, the toolkit simplifiesnetwork
diagnostics. The factor that limits throughput — the receiver’s advertised window, congestion
or the sending application — for example can be read directly from the variables. More compli-
cated questions might be answered by interpreting the large number of available performance
variables.

The following groups of variables are provided by the Web100 toolkit [17]:

• connection state (the state of the TCP state machine and flags indicating negotiated pro-
tocol features such as TCP timestamps and Selective Acknowledgements)

• IP traffic (number of bytes and segments sent and received)

• average throughput

• triage (instruments that characterize the protocol events that limit TCP sending rate)

• congestion (cwnd, ssthresh , congestion algorithm, timeouts, duplicate ACKs)

• network path properties (loss, timeouts, duplications, retransmissions, segment re-ordering,
round trip time, retransmission timeout, MSS)

• API usage (buffer occupacy)

A complete description of all variables can be found in [1]. The variables that we used in
the software presented below will be described later.

3.3 Requirements

We have written a web server that accepts connections from web clients and performs diagnos-
tics on the connection while bulk data is being up or downloaded. The great advantage of using
the Web100 Toolkit this way is that only the server needs to be equipped with the modified
kernel and library and any client can benefit from it without being modified.

For this web server we have established the following requirements.
It must support diagnostics during selectively up or download of bulk data. For the upload

the user has to choose a file from his local filesystem and send it via the HTTP POST method
[7]. The bulk download must be realized by including a large HTML comment in the requested
web page. The user must be able to choose the size of the bulk data.

The first web page gives a short explanation of the diagnostics conducted and contains one
web form for entering the amount of data to download and one web form for choosing a local
file to upload.

The second web page contains the large HTML comment if the user has chosen the bulk
download and the results of the diagnostics consisting of graphs and textual information.

1For example with Web100 we were able to identify a bug in the Linux 2.4 kernel that causescwnd to deflate
belowssthresh during Fast Retransmit.
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3.3.1 Graphs and Values for Bulk Download

The following graphs must be generated from the values obtained during the bulk transfer from
web server to client.

• round trip time (RTT)

• retransmission timeout (RTO)

• congestion window (cwnd)

• slow start threshold (ssthresh )

The following values obtained during the bulk download must be displayed.

• features and parameters negotiated during three-way handshake: Maximum Segment Size
(MSS), Selective Acknowledgements option (SACK), TCP Timestamp option, Explicit
Congestion Notification (ECN)

• minimum, median and maximum of the receiver’s advertised window

• the reason for bandwidth limitation2

• throughput

• median, average and root mean square deviation of the round trip time

• amount of data retransmitted

3.3.2 Graphs and Values for Bulk Upload

The following graphs must be generated from the values obtained during the bulk transfer from
web client to server.

• the next expected sequence number (time sequence diagram)

• instantaneous throughput

The following values obtained during the bulk download must be displayed.

• features and parameters negotiated during three-way handshake: Maximum Segment Size
(MSS), Selective Acknowledgements option (SACK), Timestamps option, Explicit Con-
gestion Notification (ECN)

• throughput

• amount of data that arrived duplicated

2the receiver’s advertised window, congestion or the sending application
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3.4 Design and Implementation

+Constructor() : void


+addVariable() : void


+setEventMap() : void


+addEvent() : void


+getInt() : int


+getInt32()


+getUInt32()


+getInAddr()


+getUInt64()


+setPollInterval() : void


+stop() : void


#Run() : void


-ag


-cn


-pollThread


-pollInterval : unsigned long


-stop : bool


-varNames


-values


-events


-lastVal


-eventMap


VarTracker


+Constructor() : void


+isRunning() : bool


#Run() : void


#generateBulk() : void


#dumpValuesToFile() : void


#generateGnuplotGraph() : int


-handlerThread


-sd : int


-cliAddr


WebClientHandler


1
 2


Figure 3.1:UML class diagram for web server

3.4.1 The VarTracker class — a wrapper for Web100

The functions provided by thelibweb100 library are not very convenient to use. First a
connection must be selected either by iterating over all current connections, by providing source
and destination addresses and port numbers or by providing a Unixsocket descriptor. Then
variables must be looked up before their value can be accessed.

What is completely missing is a notification mechanism that informs the application when
a certain value has changed. Consequently a software that uses the Web100 toolkit can either
risk to miss values if it does not poll frequently enough or poll too often and thus read the same
value more often and consume more resources than necessary.

Furthermoreevents— for example a timeout or the fast retransmission of a segment — are
only reported indirectly as a counter will be increased that must be polled so that the application
finds out about the event.

We wrote theVarTracker class to facilitate access to the variables provided by Web100.

The constructor creates and starts a new thread that performs the polling regularly. This is
necessary because reading from or writing to a Linux socket isblocking. That means that the
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according system call will not return until it has completed its task, which may take a certain
amount of time in which variable changes may happen that would be missed otherwise.

Getter methods enable access to the current value of a Web100 variable.

TheVarTracker class can also track Web100 variables and store their sequence of values
into a list. Therefore, theaddVariable method must be called with the name of the Web100
variable and a pointer to alist data structure.

It can also track events by applying the heuristics described earlier. Therefore,set-

EventMap must be called once to pass a pointer to amapdata structure holding a mapping
of timestamps to event names. For every event to be tracked theaddEvent method must be
called with the Web100 variable name counting the event and an event name chosen by the
developer as parameters.

The method executed by the poll thread isRun. It consists of a loop that is repeated until
thestop method is called. In this loop the designated variables are polled in an ongoing way.

To overcome the missing notification feature and to avoid storing a needlessly high number
of values only the Web100 variablePktsIn is polled in every cycle. The other designated
variables are only polled and stored to the corresponding list ifPktsIn has changed, that
means if a new segment — regardless whether it is a data segment or an acknowledgement —
has been received. Since the variables relevant for our application only change upon reception
of a segment, this is a very suitable heuristic that allows us to create easy to read graphs that
contain time/value points only where they are intuitively expected.

The feature that tracks events works in a similar way. The variable corresponding to the
event is polled in every cycle. If it has changed, a time/event name pair is stored in the event
map.

3.4.2 The WebClientHandler class

The WebClientHandler class handles connections from the web browser, that is it reads
the HTTP request from the socket and writes the HTML page that will be displayed by the
browser to the socket. At the same it conducts the polling of the Web100 variables using the
VarTracker class.

HTTP Requests and Responses

Every HTTP request consists of arequest line, aheaderand optionally abody. The request line
consists of themethod, theURL3 and the HTTP version number. The two methods relevant for
this software are the GET method that requests a web page and the POST method that allows
the user to upload data to the web server. The header of a request contains meta information
such as the media types that the browser can handle. In case of the POST method the data which
is to be uploaded is transmitted in the HTTP body.

3Uniform Resource Locator, here the address of a web page
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Every HTTP response contains astatus line, a header and in most cases a body. The status
line consists of the HTTP version number and a status code. The header contains meta informa-
tion such as media type and content length. If the requested page is available it is transferred in
the body of the HTTP response.

The full specification of the HTTP protocol can be found in [7].

A web browser connects to the web server for every web page the user requests and for every
image and other media embedded in the web page. Therefore, theWebClientHandler class
has to distinguish between four kinds of requests:

• The start page: It is read from the file system and dumped to the socket with the appro-
priate status line and header. The start page contains two HTMLforms into which the
user can enter the size of the bulk data to download and the file to upload respectively.
The submission of the form by the user will cause the web browser to request the URL
specified in the form.

• The bulk data download: In this case the class dumps the HTTP header and a web page
that consists of an HTML comment of the requested size directly followed by the results
of the diagnostics including references to graphs as well as textual information.

• The bulk data upload: Here, the request contains the file that the user chose to upload in
the body of the request. The returned web page contains the results of the diagnostics,
consisting of graphs and textual information as well.

• An embedded image: The class reads the graph that has been generated during the mea-
surement and dumps it to the socket preceded by the appropriate status line and header.

The Diagnostics Using Web100

For conducting the measurement theWebClientHandler class instantiates theVarTracker

class once before reading the HTTP request and — if necessary — once before writing the large
HTML comment. The values of the measurement during the reading of the request will be
discarded if the user has not requested the upload measurement.

A list of the Web100 variables relevant to this application together with a short description
is given in figure 3.2.

The round trip time (RTT) and retransmission timeout (RTO) graphs for the bulk data
download are simply plots of the variablesSampledRTT and CurrentRTO . The conges-
tion window (cwnd) and slow-start threshold (ssthresh ) diagrams are plots of the vari-
ablesCurrentCwnd andCurrentSsthresh where timeouts and Fast Retransmissions are
marked withTOrespectivelyFR.

The time sequence diagram for the bulk data upload is a plot ofRcvNxt minus the ini-
tial sequence numberRecvISS so that the values start at zero. The instantaneous throughput
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diagram is generated by plotting the difference of twoThruBytesReceived values with a
constant time difference.

The textual information is directly assembled as listed in the requirements from the corre-
sponding Web100 variables.

If the minimum of the receiver’s advertised window is less than half of its maximum, the
application assumes that the user’s browser was not able to read the bulk data fast enough and
is thus responsible for slowing down the transmission. In that case a warning is printed above
the diagrams.

Generation of the Graphs

The graphs are generated with the open source software gnuplot that is very popular among
scientists [34].

Gnuplot expects commands from the standard input. These commands load values from a
file and set up parameters for formatting the graph and for the output. Therefore, the method
dumpValuesToFile writes the values that theVarTracker class has stored as a list to a
file. ThegenerateGnuplotGraph method forks4 and executes the gnuplot binary, passes
the necessary commands to its standard input and waits until it exits.

3.4.3 The Web Server Application

The main function of the web server applications is simple: It opens a socket and binds it
to the port number given as command line argument. Whenever a web client connects the
connection is accepted and the corresponding socket descriptor is passed to a new instance of
theWebClientHandler class.

3.5 Deployment and Future Use

The web server has been installed on a computer at Institut Eurécom that is accessible over the
Internet. It can be reached via the URL http://metrojeu2.eurecom.fr.

An example screen shot taken on a Windows computer connected via a cable modem (512
kbit/sec) is given in figure 3.3.

The web server will be used in a lecture taught at Institut Eurécom in the future to illustrate
TCP’s congestion avoidance behavior. Furthermore it will be used in chapter 4 to validate the
values deduced by the algorithms presented in chapter 2 that infer the round trip time from
recorded traces.

4A fork is when a process creates a copy of itself, which then acts as achild of the original process, now called
theparent.
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variable description
CurrTime The time elapsed between StartTime to the most recent proto-

col event (packet sent or received).

PktsIn The total number of packets received.

SampledRTT The most recent raw round trip time measurement, in millisec-
onds, used in calculation of the RTO.

CurrentRTO The current value of the retransmit timer RTO, in milliseconds,
not scaled by the RTO backoff multiplier. See RFC 2988 [24].

CurrentCwnd The current congestion window, in bytes.

CurrentRwinRcvd The most recent window advertisement received, in bytes.

CurrentSsthresh The current slow start threshold in bytes.

Timeouts The number of times the retransmit timeout has expired when
the RTO backoff multiplier is equal to one. See RFC 2988
[24].

FastRetran The number of invocations of the Fast Retransmit algorithm.
See RFC 2581 [4].

CurrentMSS The current maximum segment size (MSS), in bytes.

SACKEnabled True if SACK has been negotiated on, else false. See
RFC 2018 [18].

TimestampsEnabled True if timestamps have been negotiated on, else false. See
RFC 1323 [11].

ECNEnabled True if ECN has been negotiated on, else false.

DataBytesIn The number of bytes contained in received data segments
(without TCP headers), including retransmitted data.

ThruBytesSent The number of bytes for which cumulative acknowledgments
have been received.

BytesRetrans The number of bytes retransmitted.

SndLimTimeSender

SndLimBytesSender

The cumulative time (in milliseconds) spent respectively bytes
sent in the “Sender Limited” state.

SndLimTimeCwnd

SndLimBytesCwnd

The cumulative time (in milliseconds) spent respectively bytes
sent in the “Congestion Limited” state. When there is a
retransmission timeout, it should be counted in SndLim-
TimeCwnd (and not the cumulative time for some other state.)

SndLimTimeRwin

SndLimBytesRwin

The cumulative time (in milliseconds) spent respectively bytes
sent in the “Receiver Limited” state.

RcvNxt The value of RCV.NXT from RFC 793 [25]. The next se-
quence number expected on an incoming segment, and the left
or lower edge of the receive window.

ThruBytesReceived The number of bytes for which cumulative acknowledgments
have been sent.

RecvISS Initial receive sequence number.

Figure 3.2:Relevant Web100 variables, taken from [1]
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Figure 3.3:Browser screen shot



Chapter 4

Validation and Assessment

In this chapter we will validate the correctness of the algorithms gathered in chapter 2.3 and
show their limitations. We will focus on the algorithms for inferring the round trip time since
the exactness of the congestion window algorithm by Jaiswal et al. has already shown to be
insufficient for universal use.

4.1 Method

The purpose of most previous work in this field was to infer only one average round trip time
per TCP connection and to generate statistics over a large number of connections. With that
objective, most authors let their algorithms calculate the RTTs for a large number of sample
connections either from “real” Internet traces or from a network simulator and compared them
to RTTs calculated by a method they assumed to be correct. Jiang et al. [14] for example use
the network delay measured by theping tool right before the start of the connection as well as
the result of the SYN-ACK method as reference values. Jaiswal et al. [12] use the average of
the RTT values measured by the kernel of the sender.

Since the focus of the software developed in this thesis is to track the round trip time over
the lifetime of a TCP connection, we decided to rather analyze a small number of traces in detail
and to understand which factors influence the exactness.

Therefore, we accessed the web server described in chapter 3 at Institut Eurécom, France,
from four different sites:

• the data center of the German ISP1&11

• a 1 Mbit/s DSL link over a wireless router to the German ISPArcor

• a 33.6 kbit/s modem link to theLeibniz Computing Centre(LRZ), Germany

1a host that is connected with a 100 MBit/s Ethernet interface
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• a 512 kbit/s cable link to the French ISPNuḿericable.

Traces were recorded both at the server and the client side. The web server stored the RTT
samples exported by the kernel to a file. For one experiment per site the bulk download from
our web server was exclusive. In a second experiment per site the recorded download had to
compete with three concurrent FTP downloads for the client side access link, which was the
bottle neck in the three cases of dial-up connections.2

The client host in the1&1 data center runs under Linux and supports the TCP Timestamp
option by default. The client host for the three connections over ISPs was anAcer notebook
running Windows XP. To enable support for the TCP Timestamp option a registry key had to be
added [20].

4.2 Validation

We ran the Jaiswal (2.3.4) and the timestamp algorithm (2.3.5) on the traces taken at the client
side. Our first idea was to use only the Web100 values as reference but since the resolution
is only 10 ms, we also ran the algorithm from 2.3.3, that emulates the sender’s behavior for
measuring the round trip time (recall figure 2.4), on the traces taken at the server side.3

The results of the exclusive1&1 download and the concurrent downloads from the other
three sites are given as graphs in the figures 4.2 to 4.5 at the end of this chapter and will be
discussed in the following.

4.2.1 Characteristics of the Transfers

The1&1 transfer (figure 4.2) was mainly limited by the receiver window of 128 KB, and no loss
occurred. There was no noticeable queueing involved. Although the tightest link between the
client and the server is 100 Mbit/s the TCP connection only reached about 30 Mbit/s throughput,
which corresponds to the fraction of receiver window and round trip time:4

1024 kbit
0.033 s

= 31 Mbit/s

This receiver window limitation is the reason why the results for the concurrent download
was similar: The other downloads were also receiver window limited and did altogether not
fully consume the full bandwidth of the tightest link.

2From the1&1 data center we processed only the trace from the exclusive transfer since the concurrent transfer
was very similar.

3Note, however, that the algorithm doesnot use TCP timestamps unlike the Web100 kernel. Thus during loss
recovery the algorithm must interrupt because acknowledgement numbers do not relate to the sequence number of
the received data segment whereas Web100 still returns RTT values because it can make the association with help of
the TCP timestamps. We will refer to this difference later in this chapter.

4The problem of the receiver window limiting TCP throughput is discussed for example in [11].
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The traffic of theArcor transfer had to pass a 1 Mbit/s DSL link, which is much tighter than
the server’s uplink. So we expected that the last router at the ISP would drop packets, which the
server would perceive as congestion and deflate the window. However, the queue of the router
just before the DSL link is big enough to buffer the packets for all four concurrent downloads.
With the filling of the queue the round trip time increases as one can see in figure 4.3. As soon
as the receiver window limits the throughput the queue does not fill any more and prevents loss.
The round trip time of about 950 ms is thus the sum of networkandqueueing delay.

This behavior is a very strong indication that approaches from previous work that only take
one RTT sample at the beginning of a connection — such as the SYN-ACK method — cannot
be taken as a representative value for the whole connection because it would underestimate it in
cases where the receiver’s link is tighter than the sender’s link and queueing is involved, which
should be the case for most private end users.

In the Leibniz Computing Centretrace without concurrent downloads we experienced the
same queueing effect as with theArcor trace above. In the experiment with concurrent down-
loads, however, the queue was overflowed, and loss — perceived as congestion by the sender
— finally occurred. This is the more challenging case for the Jaiswal algorithm because the
correctness of the round trip time depends on the correct estimation of the congestion window.
The increase of RTT in figure 4.4 corresponds again to the queue filling up. The abrupt decrease
in RTT is a signal of loss: The sender backs off exponentially and the queue can flush. This
observation could be confirmed by the values obtained from Web100.

The router ofNuḿericabledropped packets in both experiments, the one where the transfer
was exclusive as well as the one shown in figure 4.5 with concurrent downloads, as we were
able to see from the Web100 data exported by the web server.

4.2.2 Evaluation

Figure 4.1 lists the mean, standard deviation and median RTT values for all traces and all applied
methods.

Before we will analyze the traces one by one let us address one general observations if figure
4.1. The timestamp algorithm always generates less RTT values than all the other measurement
methods. That is because of timestamp ambiguity. Recall that the algorithm takes only those
ACKs into account whose TCP timestamp it has not seen before. The Jaiswal algorithm in
contrast does not have such a limitation and considers approximately as many three-way asso-
ciations as there are ACKs in a bulk transfer.

For the transfer to the1&1 data center (figure 4.2) the Web100 values’ resolution of 10 ms
is too coarse — the values jump between 30 and 40 ms. But since no loss occurred, we can
fully rely on the server side measurement as a reference. The timestamp algorithm returns
very precise values that contain almost all peaks from the reference graph. Only the number of
values is smaller for the reason mentioned previously. Since the congestion window is equal to
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trace method mean std dev median # samples

1&1 Web100 33.0 4.775 30 1373
100 Mbit/s server 32.8 0.407 32.7 3756

timestamps 32.5 0.334 32.4 1385
Jaiswal 32.8 0.928 32.7 3699

Arcor Web100 266 38.7 280 360
DSL server 251 36.2 260 389
exclusive timestamps 246 43.5 259 85

Jaiswal 265 28.4 271 377
Arcor Web100 966 71.8 960 380
DSL server 949 63.4 949 409
concurrent timestamps 944 68.9 942 192

Jaiswal 974 78.8 955 397
LRZ Web100 2853 1070 3440 78
modem server 2991 949 3430 109
exclusive timestamps 2993 827 3415 78

Jaiswal 3238 775 3576 96
LRZ Web100 8099 3104 9260 116
modem server 7828 2896 8750 92
concurrent timestamps 8231 2771 9354 81

Jaiswal 9960 5144 9810 79
Numéricable Web100 155 31.3 160 501
exclusive server 132 30.2 140 347

timestamps 126 27.7 122 121
Jaiswal 204 31.3 212 294

Numéricable Web100 168 55.5 160 528
concurrent server 137 48.0 133 325

timestamps 139 57.2 121 184
Jaiswal 223 88.1 212 262

Figure 4.1:Measurement results for all traces. The unit for mean, RMS deviation and median is ms.

the receiver window most of the time, the Jaiswal algorithm performs very well. There is only
one erroneous outlier at t=300 due to overestimation ofcwnd.

Something similar can be observed for theArcor trace. Some of the values that the time-
stamp algorithm misses due to timestamp ambiguity are unfortunately correct outliers so that
the graph looks different than the reference graphs. However, mean and median are only 2.3%
respectively 1.9% below the corresponding Web100 reference values.

In theLeibniz Computing Centregraphs the superiority of the timestamp algorithm over the
Jaiswal algorithm gets obvious. While the graph of the timestamp algorithm is very similar to
the two reference graphs, the Jaiswal algorithm systematically overestimatescwnd, which leads
to a lot of outliers and clearly falsifies mean and median.
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Figure 4.2:Round trip time measurements from1&1 data center, Germany

The same is true for theNuḿericable graphs: While after t=10000 the reference values
oscillate around 150 ms they oscillate around 200 ms in the Jaiswal graph. Besides, the outliers
after t=5000 are obviously incorrect. Consequently the mean and median for the Jaiswal values
is clearly too high.

In contrast the timestamp algorithm seems to systematically slightly underestimate the round
trip time if compared to the Web100 graph. Since its mean and median are much closer to
the corresponding server side values than to the Web100 values, the explanation is that the
kernel generates RTT samples even during loss recovery, whereas the other three methods have
to interrupt their measurement in that case. One can assume that the ISP’s router queue is
more filled after a loss than on average and that the additional samples the kernel obtains are
consequently higher than the samples outside of recovery available to the three other methods.
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Figure 4.3:Round trip time measurements from DSL connection to the German ISPArcor

4.3 Limitations

In contrast to other authors who have presented their work in this field we clearly state that
our experiment isnot representative for general Internet traffic. Non-application limited bulk
transfers arenot the predominant kind of traffic on the Internet any more.

In network telephony, audio or video streaming or peer-to-peer applications for example rate
limitation being imposed by the sending application is prevailing. Our software tries as good as
possible not to generate samples at all in that case rather than generating wrong ones. In certain
cases like in combination withdelayed acknowledgements, however, the application limitation
is not determinable by a passive approach as we have discussed in section 2.3.4.

4.4 Assessment

The analysis of the example measurement results in this chapter has shown that both the Jaiswal
and the timestamp algorithm generate very precise results for receiver window limited trans-
missions. For congestion limited transfers the timestamp algorithm is clearly superior to the
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Figure 4.4:Round trip time measurements from modem connection toLeibniz Computing Centre, Ger-
many

Jaiswal algorithm since it does not depend on the correct estimation of the congestion window.
The Jaiswal algorithm returns more samples since it does not suffer from the timestamp gran-
ularity problem. Both have to interrupt their measurements during loss recovery, which makes
them less useful for very lossy connections.

A major limitation of the timestamp algorithm is that the necessary TCP option is not en-
tirely deployed on all Internet hosts and thatbothhosts have to support it so that it is used in a
connection.

We recommend the use of the software developed in the context of this thesis for analyzing
traces where the change in round trip time over the lifetime of the connection — mainly due to
queueing effects — matters and where the user is aware of the kind of application that generated
the transferred data.

To survey RTT distribution over larger networks or even parts of the Internet on a large
scale basis where only network delay and not queueing delay should be taken into account other
methods such aspingor the SYN-ACK method are more appropriate, though.
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Figure 4.5:Round trip time measurements from cable connection to the French ISPNuḿericable



Chapter 5

Conclusion and Outlook

In this thesis, we presented several approaches for inferring congestion window and round trip
time samples from traces of TCP transmissions and have implemented some of them. The real-
ization was harder than expected, mostly because many publications in this field conceal prob-
lems and limitations of their approaches. The resulting software is a combination of multiple
algorithms aiming at combining their advantages depending on characteristics of the connec-
tion. We have shown that the software produces precise results for bulk data transfers that are
not limited by the sending application.

The results are the basis for further analysis of TCP traces conducted at Institut Eurécom
such as determining what is the limiting factor of the throughput of a TCP connection.

Furthermore, we have implemented a web server that presents the development of the con-
gestion window, the round trip time and other connection parameters to the user.

Passive techniques for round trip time estimation also pave the way for further studies of
today’s Internet. Skitter [15] is an example of utilizing active probing and IP address to location
mapping to conduct Internet wide delay measurement. Techniques allowing to compute round
trip time samples for connections from packet headers anywhere along the path may accomplish
this in a non-intrusive, passive way and without prior knowledge about what hosts and sites exist.
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